Pipeline Design Patterns¶
Explores practical log pipeline design patterns in rsyslog — how to branch data to multiple destinations, chain rulesets for staged processing, and isolate workloads with separate queues.
Overview¶
A log pipeline is flexible by design. You can branch it, chain multiple rulesets together, or separate workloads into isolated queues. These design patterns help adapt rsyslog to different environments — from simple local logging to complex, multi-tenant ingestion systems.
Each pattern below includes a short diagram and explanation.
Fan-out (branching)¶
The most common pattern: send each message to multiple destinations in parallel. This provides redundancy or enables different consumers (archive, search, alerting).
flowchart LR R["Ruleset"]:::ruleset --> A1["omfile<br>(local archive)"]:::action R --> A2["omrelp<br>(reliable ship)"]:::action R --> A3["omelasticsearch<br>(search index)"]:::action classDef ruleset fill:#dae8fc,stroke:#6c8ebf; classDef action fill:#ffe6cc,stroke:#d79b00;
How it works: Each action in a ruleset runs independently. rsyslog queues each action’s output, so one slow destination does not delay the others.
Example:
ruleset(name="MainFlow") {
action(type="omfile" file="/var/log/app.log")
action(type="omrelp" target="central.example.net" port="2514")
action(type="omelasticsearch" server="es01" index="logs-app")
}
Use cases: - Store locally and forward reliably. - Split between long-term archive and search analytics. - Maintain an audit copy on local disk.
Staged processing (chaining)¶
Break complex logic into smaller, maintainable stages.
Use call
to hand off between rulesets.
flowchart LR I["Input(s)"]:::input --> R1["Ruleset<br>parse / normalize"]:::ruleset --> R2["Ruleset<br>enrich / filter"]:::ruleset --> R3["Ruleset<br>route / output"]:::ruleset --> A["Actions"]:::action classDef input fill:#d5e8d4,stroke:#82b366; classDef ruleset fill:#dae8fc,stroke:#6c8ebf; classDef action fill:#ffe6cc,stroke:#d79b00;
How it works: Each ruleset performs a specific task and then calls the next one:
ruleset(name="ParseStage") {
action(type="mmjsonparse" container="$!data")
call "EnrichStage"
}
ruleset(name="EnrichStage") {
if $!data!level == "debug" then stop
call "OutputStage"
}
ruleset(name="OutputStage") {
action(type="omfile" file="/var/log/processed.json")
}
Benefits: - Easier to test and reason about individual stages. - Enables modular reuse (different inputs can reuse the same enrich or output stage). - Failures are isolated to one stage.
Workload isolation (multi-ruleset queues)¶
Use different queues for different inputs or workloads to prevent one source from overloading another.
flowchart LR I1["Remote TCP"]:::input --> QR[("Queue<br>remote")]:::queue --> RR["Ruleset<br>remote"]:::ruleset --> AR["Remote<br>actions"]:::action I2["Local system"]:::input --> QL[("Queue<br>local")]:::queue --> RL["Ruleset<br>local"]:::ruleset --> AL["Local<br>actions"]:::action classDef input fill:#d5e8d4,stroke:#82b366; classDef ruleset fill:#dae8fc,stroke:#6c8ebf; classDef action fill:#ffe6cc,stroke:#d79b00; classDef queue fill:#f5f5f5,stroke:#999999,stroke-dasharray: 3 3;
How it works: Each input is assigned its own ruleset and queue. This prevents bursty remote logs from starving local system messages.
Example:
module(load="imtcp")
input(type="imtcp" port="514" ruleset="RemoteFlow")
module(load="imuxsock") # local system logs
input(type="imuxsock" ruleset="LocalFlow")
ruleset(name="RemoteFlow" queue.type="LinkedList" queue.size="10000") {
action(type="omrelp" target="loghost" port="2514")
}
ruleset(name="LocalFlow" queue.type="LinkedList" queue.size="2000") {
action(type="omfile" file="/var/log/local.log")
}
Best practices:
- Choose queue sizes proportional to expected input volume.
- Use fewer worker threads for disk-bound outputs.
- Monitor queue backlog via impstats
.
Pattern selection guide¶
The table below summarizes which design pattern fits common scenarios.
Scenario |
Recommended pattern |
---|---|
Multiple destinations, same data |
Fan-out |
Complex processing sequence |
Staged rulesets |
Independent workloads |
Workload isolation |
Conclusion¶
Design patterns make rsyslog configurations scalable and maintainable. Start simple with a single ruleset, then add branching or staging as your log architecture grows. Combine these patterns with tuned queues for maximum throughput and resilience.
See also¶
Support: rsyslog Assistant | GitHub Discussions | GitHub Issues: rsyslog source project
Contributing: Source & docs: rsyslog source project
© 2008–2025 Rainer Gerhards and others. Licensed under the Apache License 2.0.